Regioselectivity in preparation of unsymmetrically substituted 3-aminoquinoxalin-2(1H)-ones

Éva Csikós, ${ }^{a}$ Csaba Gönczi, ${ }^{a}$ Benjamin Podányi, ${ }^{a}$ Gábor Tóth ${ }^{b}$ and István Hermecz ${ }^{*}{ }^{a}$
${ }^{a}$ Chinoin Pharmaceutical and Chemical Works Ltd., Research Centre, PO Box 110, H-1325 Budapest, Hungary
${ }^{b}$ Technical Analytical Research Group of Hungarian Academy of Sciences, Technical University of Budapest, Gellért tér 4,H-1111 Budapest, Hungary

Received (in Cambridge) 14th April 1999, Accepted 11th May 1999

Regioisomer formation has to be considered in the preparation of quinoxalines having different substituents at the 2- and 3-position. Oxalomonoimidic acid dimethyl ester or oxalomonoimidic acid diethyl ester, chloro(methylimino)acetic acid ethyl ester, chloro[(Z)-hydroxyimino $]$ acetic acid ethyl ester and $(Z)-2-[(E)$-hydroxyimino $]$ acetohydroximoyl chloride were applied to the synthesis of 3-aminoquinoxalin- $2(1 \mathrm{H})$-one derivatives, and the isomer ratio was investigated concerning the reactivity of the ring-closure reagent. The structures of reaction products were identified using ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR techniques. A direct synthesis of quinoxaline-2,3($1 \mathrm{H}, 4 \mathrm{H}$)-dione 3 -oximes is described.

Introduction

Quinoxaline chemistry are again in the center of interest because of these compounds' CNS activity. Quinoxaline-2,3$(1 H, 4 H)$-diones are the favorite quinoxalines to have been patented so far. We prepared a series of substituted 3-amino-quinoxalin- $2(1 \mathrm{H})$-ones for investigating their biological activity on the N-methyl-D-aspartate (NMDA) glycine-binding test. Among these compounds are some which have antagonist character. ${ }^{1}$ Our aim was to have in hand all possible isomers.
In contrast to quinoxaline- $2,3(1 H, 4 H)$-diones in the reaction of a 1,2 -disubstituted benzene and an unsymmetrical twocarbon synthon the formation of regioisomers has to be considered. In an analogous example, Alvarez-Builla et al. studied the regioselectivity in the Westphal condensation: ${ }^{2}$ unsymmetrical 1,2 -diketones and α-methylcycloimmonium substrates were allowed to react, and the molar ratio of the product was reported to be highly dependent on the nature of the diketone.
The condensations of methyl ${ }^{3 a}$ or ethyl ${ }^{3 b}(\mathrm{~m})$ ethoxycarbonylformimidate $\mathbf{2}$ with 1,2-phenylenediamines gives in an excellent yield 3-aminoquinoxalin- $2(1 \mathrm{H})$-ones. ${ }^{4}$ McKillop et al. suggest some substituent effect of 1,2-phenylenediamines on the formation of regioisomers but, based on these results only, one cannot predict the isomer ratio by using different oxalomonoimidic acid derivatives as a ring-closure agent. We were interested in the impact of the other partner on the reaction; if there is a difference between the two active carbons in the oxalic acid derivatives that makes it possible to influence the reaction not only by the dinucleophile but by the dielectrophile as well. We followed the reactivity of four oxalomonoimidic acid derivatives $\mathbf{2}, 5, \mathbf{8}, \mathbf{1 1}$ with 1,2 -phenylenediamines $\mathbf{1 a}$ and $\mathbf{1 b}$.

Results and discussion

In principle 3,5-dichloro-1,2-diaminobenzene 1a and an oxalomonoimidate 2 can form two isomeric quinoxalines. In spite of this we obtained a uniform product 3a (Scheme 1). ${ }^{5}$ On the other hand, two isomers $\mathbf{3 b}$ and $\mathbf{4 b}$ were formed from trifluoromethyl compound $\mathbf{1 b}$.
The compounds 3c and 3d were used as models to help the identification of the isomers by NMR techniques.

1

3

2

4
Scheme 1^{5} 3-Aminoquinoxalin-2($1 H$)-ones

1,3,4	R^{1}	R^{2}	R^{3}		Ratio ${ }^{\text {a }}$	$\mathrm{Y}(\%)^{\text {b }}$
a	Cl	H	Cl	3a	100	78
b	H	CF_{3}	Cl	3b	8	80
				4b	92	80
c	H	Cl	Cl	3 c	100	85
d	H	H	H	3 d	100	82
e	H	CH_{3}	H	3 e	71	77
				4 e	29	
f	H	Cl	H	$3 f$ 4 f	80 20	71

$\mathrm{R}=\mathrm{Me}, \mathrm{Et} .{ }^{a}$ Isomer ratio by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Total yield.
${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC ${ }^{6}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC ${ }^{7}$ experiments on $\mathbf{3 c}$ showed that the chemical shifts of $\mathrm{C}-5$ and $\mathrm{C}-8$ are 124.5 and 115.6 ppm , respectively. Thus the chemical shift of the aromatic carbon in an ortho position to the amide nitrogen is almost 10 ppm lower than that of the carbon in an ortho position to the imino group. This chemical-shift difference was used later to identify quinoxaline isomers.

Starting from the ${ }^{13} \mathrm{C}$ chemical shifts of compound 3d the shift values of compound 3a and its possible isomer $\mathbf{4 a}$ were calculated using substituent chemical-shift increments of the chlorine atom. ${ }^{8}$ The crucial shifts of benzene-ring carbons are shown in Table 1. The aromatic $\mathrm{C}-\mathrm{H}$ carbons were differ-

Table $1 \quad{ }^{13} \mathrm{C}$ Chemical shifts (ppm) for 3a and 4a

	CH	CH	CCl
Calc. 3a	$122.2 \mathrm{C}-5$	$124.4 \mathrm{C}-7$	$122.4 \mathrm{C}-8$
Calc. 4a	$113.2 \mathrm{C}-8$	$124.4 \mathrm{C}-6$	$131.4 \mathrm{C}-5$
Measured	122.5	122.6	$119.0 \mathrm{C}-8$

entiated from all others using the DEPT pulse sequence. ${ }^{9}$ The measured chemical shifts of the two $\mathrm{C}-\mathrm{H}$ carbons indicate that the product is $\mathbf{3 a}$. A further argument is the chemical shift of C-8.

In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$ and $\mathbf{4 b}$ one of the aromatic CH carbons in each signal set showed a small quartet splitting due to the spin-spin interaction with the CF_{3} group in an ortho position. The chemical shift of this carbon is 123.0 ppm in the major and 114.3 ppm in the minor set of signals. The chemical shift of the other CH carbon is 117.2 ppm in the major and 125.8 ppm in the minor set of signals. These chemical-shift differences show that the major component corresponds to $\mathbf{4 b}$ and the minor to the isomeric structure $\mathbf{3 b}$.

Earlier work reported 100% chemoselectivity in the case of 4-nitro-1,2-phenylenediamine, where due to the electron-withdrawing effect of the nitro group 3-amino-6-nitroquinoxalin-2$(1 H)$-one was formed, exclusively. Surprisingly no effect was found in the case of 4-methyl-1,2-phenylenediamine 1e ($1: 1$ mixture of the two possible isomers was reported). ${ }^{4}$ In our experiments oxalomonoimidic acid esters 2 and diamine 1e gave the condensation product with excellent yield. The intensity ratio of 3 e and $\mathbf{4 e}$ was $71: 29$ by ${ }^{1} \mathrm{H} \mathrm{NMR}$, which was confirmed by HPLC results as well. The ${ }^{13} \mathrm{C}$ data on $\mathbf{3 a - d}$ and $\mathbf{4 b}$ reveal that one of the aromatic CH carbons from the major set of signals at 115.1 ppm , and one from the minor set of signals at 114.9 ppm , are in an ortho position to the amide group. The HMQC chemical-shift-correlation experiment indicated that the former carbon is in ortho position with the methyl group, while the latter is in meta position with the methyl group.

In the case of $\mathbf{3 f}$ and $\mathbf{4 f}$ the isomer ratio is very close to that of $\mathbf{4 b}$ and $\mathbf{3 b}$. The electron-withdrawing effect of the 4-trifluoromethyl group on the amino group para in $\mathbf{1 b}$ is reflected by the product isomer ratio. The effect of 3 - and 5-chloro substituents in 1a is opposite to that of the 4-chloro in 1f. The substituent at position 3 in 1,2-phenylenediamine 1a has a remarkable steric effect, so that we obtained 3a exclusively.

Chloro(methylimino)acetic acid ethyl ester ${ }^{10} 5$ is also suitable to give quinoxalines; the unsubstituted 3-(methylamino)-quinoxalin-2(1H)-one is described. ${ }^{11}$ Imidoyl chloride 5 behaves similarly to 2 , so it reacts readily with diamines $\mathbf{1 a}$ and $\mathbf{1 b}$, giving the hydrochloride salts of 6,8-dichloro-3-(methyl-amino)quinoxalin- $2(1 H)$-one $\mathbf{6 a}$, and a regioisomeric mixture of $\mathbf{6 b}$ and $\mathbf{7 b}$ (Scheme 2). The NMR chemical shifts are close to the values measured for $\mathbf{3 a}$, confirming that only $\mathbf{6 a}$ was formed in this reaction from the two possible isomers. The data are comparable, because the salt is dissociated into the free base to a large extent in the DMSO solution at $70{ }^{\circ} \mathrm{C}$. For the structure identification of $\mathbf{6 b}$ and $7 \mathbf{b}$ their base was used. The chemical shifts of $\mathbf{7 b}$ base is similar to the values measured for $\mathbf{4 b}$, confirming that the major and the minor component correspond to structures $\mathbf{7 b}$ and $\mathbf{6 b}$, respectively.
(Z)-Chloro-(hydroxyimino)acetic acid ethyl ester ${ }^{12} 8$ reacts readily in the presence of base in ethanol-water media with 1,2-phenylenediamines to give quinoxaline-2,3(1H,4H)-dione 3-oximes (Scheme 3). Compound 1a gave with $\mathbf{8}$ the two possible quinoxaline isomers 9 a and 10a. The isomer ratio was confirmed by HPLC. The structure of the major component was confirmed by a ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum.

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR isomer ratio of $\mathbf{1 0 b}$ and $\mathbf{9 b}$ was supported by

7
Scheme 2 ${ }^{5}$ 3-(N-Methylamino)quinoxalin-2(1 H)-ones
a; $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{b} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=\mathrm{Cl}$

	Ratio a	$\mathrm{Y}(\%)^{b}$
$\mathbf{6 a}$	100	61
$\mathbf{6 b}$	10	75
$\mathbf{7 b}$	90	

${ }^{a}$ Isomer ratio by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Total yield.

Scheme 3^{5} Quinoxaline-2,3(1H,4H)-dione 3-oximes
a; $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{b} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=\mathrm{Cl}$

	Ratio ${ }^{\text {a }}$	$\mathrm{Y}(\%)^{\text {b }}$
9a	76	80
10a	24	80
9 b	21	81
10b	79	81
${ }^{a}$ Isomer ratio by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\text {b }}$ Total yield.		

HPLC as well. The structure of the isomers was confirmed by ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectra.

Chloroglyoxime with two mol equiv. of 1,2-phenylenediamine was reported to form quinoxaline oxime. ${ }^{13}$ More precisely, $(Z)-2-[(E)$-hydroxyimino $]$ acetohydroximoyl chloride ${ }^{14} \mathbf{1 1}$ reacts readily only (the E, E isomer failed) with $\mathbf{1 a}$ and 1b in the presence of base in ethanol-water media, giving mixtures of isomers 12a and 13a, 12b and 13b, respectively (Scheme 4).

Isomers 12a and 13a were separated by chromatography. ${ }^{15}$ In the 2-quinoxalinone oxime structure the $\mathrm{C}-5$ and the $\mathrm{C}-8$ carbons show the expected characteristic chemical-shift differences: 13.8 and 14.9 ppm between C-5 in 13a and C-8 in 12a and between C-5 in 12a and C-8 in 13a, respectively.
The structure of $\mathbf{1 2 b}$ and $\mathbf{1 3 b}$ was confirmed by ${ }^{13} \mathrm{C}$ NMR spectrum. The aromatic CH carbons' chemical shifts show the characteristic differences observed between the same carbons' of the isomers 12a and 13a.

The decreased selectivity of the ring closure using $\mathbf{8}$ com-

pared to the two other oxalomono imidic acid derivatives $\mathbf{2}$ and 5 permit compound 10a to appear as a minor component, and the $\mathbf{9 b}: \mathbf{1 0 b}$ ratio is also higher than $\mathbf{4 b}: \mathbf{3 b}$ or $\mathbf{6 b}: \mathbf{7 b}$. The ring-closure reagent $\mathbf{1 1}$ behaves in a similar manner to $\mathbf{8}$, giving isomer mixtures. There is no significant difference in the isomer ratios in all four mixtures. The more reactive chloroxime eliminates the fine difference between amino groups in 1,2phenylenediamines $\mathbf{1 a}$ and $\mathbf{1 b}$, resulting in a $\approx 3: 1-4: 1$ isomer ratio.

In the first approach ${ }^{4}$ the obtained isomeric ratios in the ringclosure reactions can be interpreted as the electronic effect of the substituent of the 1,2 -phenylenediamines, because the first step is the nucleophilic attack at the imino carbon atom of the more electron rich nitrogen. Examining the question more deeply we can draw the conclusion that the isomer ratios in the product do not depend only on this. Our examples clearly reveal the essential impact of the ring-closure agent's reactivity as well. Namely, the more reactive chloro(hydroxyimino) derivatives decrease the selectivity, raising the probability of the appearance of a minor isomer. This way we can obtain the missing aminoquinoxalinone isomer by simple chemical reactions (e.g., from oxime). The steric effect also has to be considered in the case of 1,2-phenylenediamines having a substituent at position 3 .

Our results reveal that by choosing the appropriate tool one can influence the isomer ratio of quinoxalines more or less independently from the effects of the substituents of the 1,2phenylenediamine.

Experimental

Mps were determined in open capillary tubes on a Büchi 535 apparatus and are uncorrected. The yields were not maximised. The NMR spectra were measured on a Bruker DRX-400 instrument at $400.13\left({ }^{1} \mathrm{H}\right), 100.6\left({ }^{13} \mathrm{C}\right)$ and $40.5\left({ }^{15} \mathrm{~N}\right) \mathrm{MHz}$ respectively, or on a Bruker AC-200 instrument at $200.13\left({ }^{1} \mathrm{H}\right)$ and $50.6\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}$, respectively, for solutions in DMSO- d_{6}. The DEPT, HMQC and HMBC spectra were measured using the standard pulse programs of the XWINNMR software. We applied a 40 ms delay for polarisation transfer and a 1 ms purging pulse in the long-range HSQC experiment. ${ }^{16}$ The ${ }^{1} \mathrm{H}^{-15} \mathrm{~N}$ HMBC spectra were measured on a Bruker DRX-500 instrument using gradient coherence ${ }^{17}$ selection. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are referenced to internal tetramethylsilane; ${ }^{15} \mathrm{~N}$ chemical shifts are referenced to external liq. $\mathrm{NH}_{3} . J$-Values are given in

Hz. The ratio of isomers was determined by NMR and HPLC (Waters 991 system with Chiracel OD, $10 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}$ column; Waters Maxima 820 system Purospher RP-18, $5 \mu \mathrm{~m}$, $250 \times 4.0 \mathrm{~mm}$ column, flow rate $1.0 \mathrm{ml} \mathrm{min}^{-1}$). IR spectra were measured on Bruker IFS-28 (KBr). MS spectra were measured on a VG-TS 250. Flash chromatography was carried out on silica gel $60 \mathrm{H}(5-40 \mu \mathrm{~m})$, Merck, for TLC.

Oxalomonoimidic acid dimethyl ester 2, $\mathrm{R}=\mathbf{M e}$

Methyl cyanoformate ($24.3 \mathrm{~g}, 0.285 \mathrm{~mol}$) and $\mathrm{MeOH}(9.13 \mathrm{~g}$, 0.285 mol) in petroleum ether (distillation range $40-70^{\circ} \mathrm{C} ; 30$ ml) were cooled to $-10^{\circ} \mathrm{C}$. Anhydrous HCl gas was bubbled through the mixture for one and a half hours; temperature was maintained between -10 and $0^{\circ} \mathrm{C}$. The precipitated hydrochloride salt was collected by filtration (wet weight 41.8 g). It was suspended in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ and the mixture was stirred while triethylamine ($35 \mathrm{ml}, 0.25 \mathrm{~mol}$) was added dropwise, while the temperature was maintained between 8 and $15^{\circ} \mathrm{C}$, and was then stirred for another hour. The precipitate was filtered off, and washed with $\mathrm{Et}_{2} \mathrm{O}$. The solvent was evaporated in vacuo. The residue (yellow oil, 16.6 g) was distilled in vacuo to afford a liquid ($11.6 \mathrm{~g}, 34.5 \%$; bp $60^{\circ} \mathrm{C} / 28 \mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.4245$).

3-Aminoquinoxalin-2($\mathbf{1 H}$)-ones 3 and 4. General procedure

To a solution or suspension of 1,2-diaminobenzene derivative 1a-e (10 mmol) in absolute $\mathrm{EtOH}(15 \mathrm{ml})$ was added oxalomonoimidic acid diethyl ester ${ }^{3 b}(\mathbf{2} ; \mathrm{R}=\mathrm{Et})(1.60 \mathrm{~g}, 11 \mathrm{mmol})$ or oxalomonoimidic acid dimethyl ester $(\mathbf{2} ; \mathrm{R}=\mathrm{Me})(1.29 \mathrm{~g}, 11$ $\mathrm{mmol})$. The reaction mixture was kept at $25^{\circ} \mathrm{C}$ for $8-48 \mathrm{~h}$. The precipitate was filtered off, washed with $\mathrm{EtOH}(3 \times 5 \mathrm{ml})$ and dried. The crude material was analyzed.

3-Amino-6,8-dichloroquinoxalin-2(1H)-one 3a. (1.79 g, 78\%) as off-white crystals, $\mathrm{mp}>316^{\circ} \mathrm{C}$ (Found: C, 41.7 ; H, 2.1; N, 18.5; $\mathrm{Cl}, 30.9$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 41.8 ; \mathrm{H}, 2.2 ; \mathrm{N}, 18.3$; $\mathrm{Cl}, 30.8 \%) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.23\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,7} 2.3,5-\mathrm{H}\right), 7.32(\mathrm{~d}$, $1 \mathrm{H}, 7-\mathrm{H}) 7.40$ and 7.75 (each br, each $1 \mathrm{H}, \mathrm{NH}_{2}$), 11.90 (br s, 1 H , $\mathrm{NH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 119.0\left(\mathrm{dd}, J_{\mathrm{C} 8,7 \mathrm{H}} 4.2, J_{\mathrm{C} 8,5 \mathrm{H}} 0.9, \mathrm{C}-8\right), 122.5$ (dd, $J_{\mathrm{C} 5,5 \mathrm{H}} 167.4, J_{\mathrm{C} 5,7 \mathrm{H}} 5.3, \mathrm{C}-5$), 122.6 (dd, $J_{\mathrm{C} 7,7 \mathrm{H}} 172.8, J_{\mathrm{C} 7,5 \mathrm{SH}}$ $5.9, \mathrm{C}-7), 125.0\left(\mathrm{t}, J_{\mathrm{C8}, 7 \mathrm{H}}=J_{\mathrm{C8}, 5 \mathrm{H}}=6.9, \mathrm{C}-8 \mathrm{a}\right), 126.9(\mathrm{t}$, $\left.J_{\mathrm{C} 6,5 \mathrm{H}}=J_{\mathrm{C} 6,7 \mathrm{H}}=4.2, \mathrm{C}-6\right), 135.9\left(\mathrm{~d}, J_{\mathrm{C} 4 \mathrm{a}, 5 \mathrm{H}} 1.8, \mathrm{C}-4 \mathrm{a}\right), 151.9$ and 153.3 (each s, C-2, -3); MS (EI) $m / z 229\left(\mathrm{M}^{+}\right)$.

3-Amino-7-chloro-6-(trifluoromethyl)quinoxalin-2(1 H)-one 4b and 3-amino-6-chloro-7-(trifluoromethyl)quinoxalin-2(1H)-one 3b. $(2.11 \mathrm{~g}, 80 \%)$ as off-white crystals, $\mathrm{mp} 315^{\circ} \mathrm{C}$ (Found: C, 41.1; $\mathrm{H}, 2.0 ; \mathrm{N}, 16.05$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 41.2 ; \mathrm{H}, 1.9$; $\mathrm{N}, 15.9 \%$); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.3$ and 7.65 (each br, each $1 \mathrm{H}, \mathrm{NH}_{2}$); 12.42 (br, $1 \mathrm{H}, \mathrm{NH}$); 4b: $7.26(\mathrm{~s}, 0.92 \mathrm{H}, 8-\mathrm{H}), 7.54(\mathrm{~s}, 0.92 \mathrm{H}$, $5-\mathrm{H})$; 3b: 7.42 and 7.47 (each s, each $0.08 \mathrm{H}, 5-, 8-\mathrm{H}$); $\delta_{\mathrm{C}}(100$ $\mathrm{MHz}) \mathbf{4 b}$: 117.2 (s, C-8), $121.0\left(\mathrm{q}, J_{\mathrm{C} 6, \mathrm{~F}} 31.2, \mathrm{C}-6\right), 123.0\left(\mathrm{q}, J_{\mathrm{C} 5, \mathrm{~F}}\right.$ 4.9, C-5), 123.2 ($\mathrm{q}, J_{\mathrm{C}, \mathrm{F}} 272, \mathrm{CF}_{3}$), 123.5 ($\mathrm{s}, \mathrm{C}-7$), 132.4 and 132.3 (each s, C-4a, -8a), 151.6 and 153.2 (each s, C-2, -3), 3b: 114.3 (q, $J_{\mathrm{C} 8, \mathrm{~F}} 4, \mathrm{C}-8$), 124.0 ($\mathrm{s}, \mathrm{C}-6$), 125.8 ($\mathrm{s}, \mathrm{C}-5$), 127.4 (C-8a), 137.7 (s, C-4a), 151.3 and 154.4 (each s, C-2, -3).

3-Amino-6,7-dichloroquinoxalin-2(1H)-one 3c. (1.96 g, 85\%) as off-white crystals, $\mathrm{mp}>316^{\circ} \mathrm{C}$ (lit., ${ }^{4}>320^{\circ} \mathrm{C}$) (Found: C, 41.85; H, 2.2; N, 18.3; Cl, 31.0. Calc. for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 41.8$; $\mathrm{H}, 2.2 ; \mathrm{N}, 18.3 ; \mathrm{Cl}, 30.9 \%) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.25$ and 7.65 (each br, each $1 \mathrm{H}, \mathrm{NH}_{2}$), $7.26(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 12.27$ ($\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 115.6(\mathrm{C}-8), 124.4,124.5$ and 128.4 (C-6, -7, -8a), 124.6 (C-5), 133.5 (C-4a), 150.9 and 152.6 (C-2, $-3) ; \delta_{\mathrm{N}}(40.5 \mathrm{MHz}) 85.0\left(\mathrm{NH}_{2}\right), 144.4(\mathrm{~N}-1), 227.2(\mathrm{~N}-4)$.

3-Aminoquinoxalin-2 $\mathbf{(1 H)} \mathbf{~ - o n e ~ 3 d . ~}(1.32 \mathrm{~g}, 82 \%)$ as off-white crystals, $\mathrm{mp}>316^{\circ} \mathrm{C}$ (lit., ${ }^{4}>350^{\circ} \mathrm{C}$) (Found: C, $59.6 ; \mathrm{H}, 4.5$; $\mathrm{N}, 26.25$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 59.6 ; \mathrm{H}, 4.4 ; \mathrm{N}, 26.1 \%$); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 7.05\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.15-7.05(\mathrm{~m}, 3 \mathrm{H}, 6,-7,-8-\mathrm{H}), 7.27$
(m, 1H, 5-H), 12.11 (br, 1H, NH); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 115.0(\mathrm{C}-8)$, 123.2, 123.4 and 124.3 (C-5, -6, -7), 128.7 (C-8a), 133.6 (C-4a), 151.6 and 152.2 (C-2, -3).

3-Amino-7-methylquinoxalin-2(1H)-one 3e and 3-amino-6-methylquinoxalin- $\mathbf{2 (1 H})$-one $\mathbf{4 e}$. $(1.35 \mathrm{~g}, 77 \%)$ as off-white crystals, $\mathrm{mp}>316^{\circ} \mathrm{C}$ (lit., ${ }^{4}>320^{\circ} \mathrm{C}$) (Found: C, 61.5; H, 5.3; $\mathrm{N}, 24.2$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 61.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 24.0 \%$); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.9\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$), $12.02(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$; 3e: $6.93\left(\mathrm{dd}, 0.71 \mathrm{H}, J_{5,6} 8.1, J_{6,8} 1.9,6-\mathrm{H}\right), 6.98(\mathrm{~d}, 0.71 \mathrm{H}, 5-\mathrm{H})$, 7.20 (d, $0.71 \mathrm{H}, 8-\mathrm{H}), 4 \mathrm{e} ; 6.92$ (dd, $\left.0.29 \mathrm{H}, J_{7,8} 8.1, J_{5,7} 2.1,7-\mathrm{H}\right)$, $7.06(\mathrm{~d}, 0.29 \mathrm{H}, 8-\mathrm{H}), 7.12(\mathrm{~d}, 0.29 \mathrm{H}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 3 \mathrm{e}$: $21.0\left(\mathrm{CH}_{3}\right), 115.1(\mathrm{C}-8), 124.2-124.5(\mathrm{C}-5,-6), 128.6(\mathrm{C}-8 \mathrm{a})$, 131.5 and 132.9 (C-4a, -7), 151.7 and 151.8 (C-2, -3); 4e: 20.9 $\left(\mathrm{CH}_{3}\right), 114.9(\mathrm{C}-8), 124.2-124.5(\mathrm{C}-5,-7), 126.5(\mathrm{C}-8 \mathrm{a}), 132.4$ and 133.6 (C-4a, -6), 151.6 and 152.3 (C-2, -3); MS (EI) $m / z 175$ $\left(\mathrm{M}^{+}\right)$; HPLC (Waters 991, eluent: n -hexane-ethanol-propan-2ol, 800:150:50; analysis time: 50 min , detection: 222 nm) [t_{R} (major) $17.84 \mathrm{~min}, t_{\mathrm{R}}$ (minor) 15.86 min]. Ratio of integration major: : minor $=72: 28$.

3-Amino-7-chloroquinoxalin-2($\mathbf{1 H}$)-one 3f and 3-amino-6-chloroquinoxalin- $\mathbf{2 (1 H})$-one $\mathbf{4 f}$. $(1.39 \mathrm{~g}, 71 \%)$ as off-white crystals, $\mathrm{mp}>315^{\circ} \mathrm{C}$ (Found: C, 49.1; H, 3.3; N, 21.35. Calc. for $\left.\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 49.1 ; \mathrm{H}, 3.1 ; \mathrm{N}, 21.5 \%\right)$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.19(\mathrm{br}$, $2 \mathrm{H}, \mathrm{NH}_{2}$), 12.13 (br, $1 \mathrm{H}, \mathrm{NH}$); 3f: 7.11 (dd, $0.80 \mathrm{H}, J_{5,6} 11.5, J_{6,8}$ $2.4,6-\mathrm{H}), 7.12(\mathrm{~d}, 0.80 \mathrm{H}, 8-\mathrm{H}), 7.26$ (d, $0.80 \mathrm{H}, 5-\mathrm{H}) ; 4 \mathrm{f}: 7.11$ (dd, $0.20 \mathrm{H}, 8-\mathrm{H}), 7.14(\mathrm{~d}, 0.20 \mathrm{H}, 7-\mathrm{H}), 7.28(\mathrm{~d}, 0.20 \mathrm{H}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}$ (50 MHz) 3f: 114.2 (C-8), 123.1 (C-6), 125.6 (C-5), 126.8, 129.6 and 132.5 (C-7, -4a, -8a), 151.4 and 152.2 (C-2, -3), 4f: 116.4 (C-8), 123.0 (C-5), 127.0, 127.6 and 134.8 (C-6, -8a, -4a), 152.2 and 152.8 (C-2, -3).

3-(N-Methylamino)quinoxalin-2(1 H)-ones 6 and 7. General procedure

A 1,2-diaminobenzene derivative $\mathbf{1 a}$ or $\mathbf{1 b}$ (5 mmol) was dissolved or suspended in absolute THF (8 ml). Keeping the temperature of the mixture at $10^{\circ} \mathrm{C}$, chloro(methylimino) acetic acid ethyl ester 5 ($0.90 \mathrm{~g}, 6 \mathrm{mmol}$) was added. After storage at room temperature for 1 day the precipitate was filtered off, and washed with EtOH.

6,8-Dichloro-3-(methylamino)quinoxalin-2(1H)-one hydrochloride $6 \mathrm{a} .(0.86 \mathrm{~g}, 61 \%)$ as off-white crystals, $\mathrm{mp} 262-265^{\circ} \mathrm{C}$ (Found: C, 38.5; H, 2.9; N, 15.2; Cl, 30.9. Calc. for $\left.\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl}: \mathrm{C}, 38.5 ; \mathrm{H}, 2.9 ; \mathrm{N}, 15.0 ; \mathrm{Cl}, 30.8 \%\right) ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 2.95\left[\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}\left(\mathrm{NH}, \mathrm{CH}_{3}\right) 4.8, \mathrm{CH}_{3}\right] 7.37$ and 7.44 (each s, each $1 \mathrm{H}, 5-,-7-\mathrm{H}$), 8.47 (br, $1 \mathrm{H}, \mathrm{N} H \mathrm{Me}$), 11.92 (br s, 1 H , $\left.\mathrm{N}^{1}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, 70^{\circ} \mathrm{C}\right) 28.1\left(\mathrm{NCH}_{3}\right), 119.1(\mathrm{C}-8), 121.1$ and 122.8 (C-5, -7), 123.8 (C-8a), 126.9 (C-6), 133.2 (C-4a), 150.6 and 151.3 (C-2, -3).

7-Chloro-3-methylamino-6-(trifluoromethyl)quinoxalin-

 2(1H)-one hydrochloride 7b and 6-chloro-3-methylamino-7-(trifluoromethyl)quinoxalin-2(1H)-one hydrochloride $\mathbf{6 b}$. $(1.18 \mathrm{~g}$, 75%) as off-white crystals, $\mathrm{mp}>316^{\circ} \mathrm{C}$ (Found: C, 38.0; H, 2.8 ; $\mathrm{N}, 13.3 ; \mathrm{Cl}, 22.6$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl}: \mathrm{C}, 38.2 ; \mathrm{H}, 2.6$; $\mathrm{N}, 13.4 ; \mathrm{Cl}, 22.6 \%)$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7 \mathrm{~b}: 3.06[\mathrm{~d}, 2.7 \mathrm{H}$, $\left.J\left(\mathrm{NH}, \mathrm{CH}_{3}\right) 4.7, \mathrm{CH}_{3}\right], 7.47(\mathrm{~s}, 0.9 \mathrm{H}, 8-\mathrm{H}), 8.14$ (br s, 0.9 H , $5-\mathrm{H}), 9.20$ (br, $0.9 \mathrm{H}, \mathrm{N} H \mathrm{Me}$), 12.87 (br s, $0.9 \mathrm{H}, \mathrm{N}^{1} \mathrm{H}$); $\mathbf{6 b}: 3.04$ [d, $\left.0.3 \mathrm{H}, \mathrm{J}\left(\mathrm{NH}, \mathrm{CH}_{3}\right) 4.7, \mathrm{CH}_{3}\right], 7.64(\mathrm{~s}, 0.1 \mathrm{H}, 5-\mathrm{H}), 7.84(\mathrm{br} \mathrm{s}$, $0.1 \mathrm{H}, 8-\mathrm{H}), 9.10(\mathrm{br}, 0.1 \mathrm{H}, \mathrm{N} H \mathrm{Me}), 12.67\left(\mathrm{br} \mathrm{s}, 0.1 \mathrm{H}, \mathrm{N}^{1} \mathrm{H}\right) ; \delta_{\mathrm{C}}$ $(100 \mathrm{MHz}) 7 \mathrm{~b}: 30.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 118.0(\mathrm{~s}, \mathrm{C}-8), 119.0\left(\mathrm{q}, J_{\mathrm{CS}, \mathrm{F}} 5\right.$, $\mathrm{C}-5), 121.3\left(\mathrm{q}, J_{\mathrm{C} 6, \mathrm{~F}} 31.5, \mathrm{C}-6\right), 122.9\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}} 272, \mathrm{CF}_{3}\right), 125.3(\mathrm{~s}$, C-7), 125.7 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 131.1 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 149.7 and 151.5 (each s, $\mathrm{C}-2,-3$); $\mathbf{6 b}: 29.8$ (s, CH_{3}), 115.1 ($\mathrm{q}, \mathrm{J}_{\mathrm{C8}, \mathrm{~F}} 5, \mathrm{C}-8$), 122.4 ($\mathrm{s}, \mathrm{C}-5$), 126.2 (s, C-6), 150.7 and 151.2 (each s, C-2, -3).
7-Chloro-3-methylamino-6-(trifluoromethyl)quinoxalin-

$\mathbf{2 (1 H)}$-one 7b free base and 6-chloro-3-methylamino-7-(trifluoro-methyl)quinoxalin-2($1 \mathbf{H}$)-one $\mathbf{6 b}$ free base. $0.15 \mathrm{~g}(0.48 \mathrm{mmol})$ of
a mixture of $\mathbf{7 b}$ and $\mathbf{6 b}$ was dissolved in $\mathrm{EtOH}(15 \mathrm{ml})$ and 1 M $\mathrm{NaOH}(0.48 \mathrm{ml})$ was added. The solvent was evaporated in vacuo; the residue was washed with water, to afford free bases 7b and 6 b ($0.12 \mathrm{~g}, 97 \%$) as off-white crystals, mp 284-290 ${ }^{\circ} \mathrm{C}$; δ_{H} (200 MHz) 7b base: 2.92 [d, $2.79 \mathrm{H}, J\left(\mathrm{NH}, \mathrm{CH}_{3}\right) 4.9, \mathrm{NCH}_{3}$], $7.28(\mathrm{~s}, 0.93 \mathrm{H}, 8-\mathrm{H}), 7.62(\mathrm{~s}, 0.93 \mathrm{H}, 5-\mathrm{H}), 7.99(\mathrm{q}, 0.93 \mathrm{H}$, $\mathrm{N} H \mathrm{Me}$), 12.4 (br, $1 \mathrm{H}, \mathrm{N}^{1}-\mathrm{H}$); 6b base: 2.94 [d, 0.21 H , $\left.J\left(\mathrm{NH}, \mathrm{CH}_{3}\right) 4.9, \mathrm{NCH}_{3}\right], 7.49(\mathrm{~s}, 0.14 \mathrm{H}, 5-, 8-\mathrm{H}), 8.24(\mathrm{q}, 0.07 \mathrm{H}$, $\mathrm{N} H \mathrm{Me}), 12.4\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{N}^{1}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 7 \mathrm{~b}$ base: 27.6 ($\mathrm{s}, \mathrm{NCH}_{3}$), 117.2 (s, C-8), 121.0 (q, $J_{\mathrm{C} 6, \mathrm{~F}} 30.9, \mathrm{C}-6$), 123.2 (q, $J_{\mathrm{C}, \mathrm{F}}$ $270.3, \mathrm{CF}_{3}$), 123.3 ($\mathrm{s}, \mathrm{C}-7$), 123.4 (q, $J_{\mathrm{C} 5, \mathrm{~F}} 5.2, \mathrm{C}-5$), 131.7 and 132.5 (each s, C-4a, 8a), 151.5 and 151.6 (each s, C-2, -3); 6b base: $27.6\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 126.1$ and 126.7 (each s, C-5, -6), 151.3 and 152.6 (each s, C-2, -3).

Quinoxaline-2,3(1H,4H)-dione 3-oximes 9 and 10. General procedure

A 1,2-diaminobenzene derivative $\mathbf{1 a}$ or $\mathbf{1 b}$ (5 mmol) was dissolved or suspended in $96 \% \mathrm{EtOH}(4 \mathrm{ml})$ at room temperature, chloro- $[(Z)$-hydroxyimino]acetic acid ethyl ester $8(0.83 \mathrm{~g}, 5.5$ $\mathrm{mmol})$ was added, and then a solution of $\mathrm{NaHCO}_{3}(0.63 \mathrm{~g}, 7.5$ mmol) in water (12 ml) was added to the mixture dropwise. After storage at room temperature for 1 day the precipitate was filtered off, and washed with water.

6,8-Dichloroquinoxaline-2,3($1 \mathrm{H}, 4 \mathrm{H}$)-dione 3 -oxime 9 a and 5,7-dichloroquinoxaline-2,3(1H,4H)-dione 3-oxime 10a. (1.06 g, 80%) as beige crystals, $\mathrm{mp} 240^{\circ} \mathrm{C}$ (decomp.) (Found: C, 36.25; $\mathrm{H}, 2.8 ; \mathrm{N}, 16.15 ; \mathrm{Cl}, 26.7$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 36.4$; $\mathrm{H}, 2.7 ; \mathrm{N}, 15.9 ; \mathrm{Cl}, 26.85 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3188,1682,1626$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 10.3,10.8$ and 11.15 (each br, each $1 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$); 9a: 7.06 (d, $0.76 \mathrm{H}, J_{5,7} 2.0,7-\mathrm{H}$), 7.31 (d, $0.76 \mathrm{H}, 5-\mathrm{H}$); 10a: 6.97 (d, $\left.0.24 \mathrm{H}, J_{6,8} 2.0,6-\mathrm{H}\right), 7.29(\mathrm{~d}, 0.24 \mathrm{H}, 8-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 9 \mathrm{a}:$ 112.7 (dd, $J_{\mathrm{C} 5, \mathrm{H}} 169.5, J_{\mathrm{C} 5,7 \mathrm{H}} 5.6, \mathrm{C}-5$), 119.1 (s, C-8), 120.0 (dd, $\left.J_{\mathrm{C} 7, \mathrm{H}} 173.2, J_{\mathrm{C} 7,5 \mathrm{H}} 5.6, \mathrm{C}-7\right), 121.3\left(\mathrm{dd}, J_{\mathrm{C} 8,5 \mathrm{SH}}=J_{\mathrm{C8} a, 7 \mathrm{H}}=6.7\right.$, $\mathrm{C}-8 \mathrm{a}), 126.9\left(\mathrm{dd}, J_{\mathrm{C} 6,7 \mathrm{H}}=J_{\mathrm{C} 6,5 \mathrm{H}}=4.4, \mathrm{C}-6\right), 129.5\left(\mathrm{~d}, J_{\mathrm{C} 4 \mathrm{a}, 5 \mathrm{H}} 1.9\right.$, C-4a), 139.3 (s, C-3), 154.6 (s, C-2); 10a: 113.8 (dd, $J_{\mathrm{C} 8, \mathrm{H}} 167.8$, $J_{\mathrm{C} 8,6 \mathrm{H}} 5.8, \mathrm{C}-8$), 122.2 (dd, $J_{\mathrm{C} 6, \mathrm{H}} 170.3, J_{\mathrm{C} 6,8 \mathrm{H}} 5.4, \mathrm{C}-6$), 124.8 (dd, $\left.J_{\mathrm{C} 7,6 \mathrm{H}}=J_{\mathrm{C} 7,8 \mathrm{H}}=4.4, \mathrm{C}-7\right), 127.3\left(\mathrm{~d}, J_{\mathrm{C} 8,8 \mathrm{H}} 2.0, \mathrm{C}-8 \mathrm{a}\right), 154.0$ (s, C-2); $\delta_{\mathrm{N}}\left(50.7 \mathrm{MHz}\right.$, DMSO- d_{6}) 9a: 104.4 (N-4); MS (EI) m / z $245\left(\mathrm{M}^{+}\right)$; HPLC (Waters Maxima 820, eluent: 25 mM phosphate buffer- $\mathrm{CH}_{3} \mathrm{CN} 675-325$, analysis time: 30 min , detection: $222 \mathrm{~nm})\left[t_{\mathrm{R}}\right.$ (major) $6.50, t_{\mathrm{R}}$ (minor) 9.10 min$]$. Ratio of integration major $:$ minor $=75: 25$.

7-Chloro-6-(trifluoromethyl)quinoxaline-2,3(1H,4H)-dione 3oxime 10b and 6-chloro-7-(trifluoromethyl)quinoxaline-2,3($\mathbf{1 H}, \mathbf{4 H}$)-dione $\mathbf{3}$-oxime $\mathbf{9 b}$. ($1.13 \mathrm{~g}, 81 \%$) as beige crystals, mp $277-280^{\circ} \mathrm{C}$ (Found: C, 38.6; H, 1.9; N, 15.1; Cl, 13.0. Calc. for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 38.7 ; \mathrm{H}, 1.8 ; \mathrm{N}, 15.0 ; \mathrm{Cl}, 12.7 \%$); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3410,3067,1703 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ 10b: $7.09(\mathrm{~s}, 0.79 \mathrm{H}, 8-\mathrm{H})$, 7.73 (s, $0.79 \mathrm{H}, 5-\mathrm{H}$), 10.3 (br s, $0.79 \mathrm{H}, \mathrm{N}^{4}-\mathrm{H}$), 11.11 ($\mathrm{s}, 0.79 \mathrm{H}$, OH), 11.51 (br s, $\left.0.79 \mathrm{H}, \mathrm{N}^{1}-\mathrm{H}\right) ; 9 \mathrm{~b}: 7.29(\mathrm{~s}, 0.21 \mathrm{H}, 8-\mathrm{H}), 7.48(\mathrm{~s}$, $0.21 \mathrm{H}, 5-\mathrm{H}$), 10.46 (br s, $0.21 \mathrm{H}, \mathrm{N}^{4}-\mathrm{H}$), 11.24 (br s, 0.21 H , $\mathrm{OH}), 11.40\left(\mathrm{br} \mathrm{s}, 0.21 \mathrm{H}, \mathrm{N}^{1}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) \mathbf{1 0 b}: 113.2(\mathrm{q}$, $J_{\mathrm{C} 5, \mathrm{~F}} 5.2, \mathrm{C}-5$), 116.8 (s, C-8), 120.4 (q, $J_{\mathrm{C} 6, \mathrm{~F}} 31.4, \mathrm{C}-6$), 121.3 (s, C-7), 123.2 (q, $J_{\mathrm{C}, \mathrm{F}} 270, \mathrm{CF}_{3}$), 126.3 (s, C-4a), 129.1 (s, C-8a), 139.4 (s, C-3), 154.6 (s, C-2); 9a: 113.8 (q, $J_{\text {C8,F }} 5.2, \mathrm{C}-8$), 116.0 (s, C-5), 117.8 (q, $J_{\mathrm{C} 7, \mathrm{~F}} 31.4, \mathrm{C}-7$), 123.3 (q, $J_{\mathrm{C}, \mathrm{F}} 270, \mathrm{CF}_{3}$), 124.0 (s, C-6), 124.3 (s, C-8a), 131.3 (s, C-4a), 139.2 (s, C-3), 154.1 (s, C-2); Carbon-proton spin-spin interactions detected in ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ HMBC experiment: 10b: N(1)H (C-2, C-3, C-4a, C-8a, C8), OH (C-3), N(4)-H (C-2, C-8a, C-3, C-4a), 5-H (C-4a, C-5, C-6, C-7), 8-H (C-4a, C-6, C-7, C-8, C-8a); 9b: N(1)-H (C-3, C$4 \mathrm{a}, \mathrm{C}-8), \mathrm{OH}(\mathrm{C}-3), \mathrm{N}(4)-\mathrm{H}(\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8 \mathrm{a}), 5-\mathrm{H}(\mathrm{C}-4 \mathrm{a}, \mathrm{C}-5$, C-8a, C-7, C-6), 8-H (C-4a, C-6, C-8); $\delta_{\mathrm{N}}(50.7 \mathrm{MHz}$, DMSO$d_{6}$) 10b: $103.3(\mathrm{~N}-4), 139.2(\mathrm{~N}-1), 308.3\left(\mathrm{C}^{3}=\mathrm{N}\right)$; 9b: $105.7(\mathrm{~N}-4)$, $137.8(\mathrm{~N}-1)$, $310.7\left(\mathrm{C}^{3}=\mathrm{N}\right)$; Nitrogen-proton spin-spin interactions detected in ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC experiment: 10b: N(1)-H
$(\mathrm{N}-1), \mathrm{OH}\left(\mathrm{C}^{3}=\mathrm{N}\right), \mathrm{N}(4)-\mathrm{H}(\mathrm{N}-4), 5-\mathrm{H}(\mathrm{N}-4), 8-\mathrm{H}(\mathrm{N}-1) ; 9 b:$ $\mathrm{N}(1)-\mathrm{H}(\mathrm{N}-1), \mathrm{OH}\left(\mathrm{C}^{3}=\mathrm{N}\right), \mathrm{N}(4)-\mathrm{H}(\mathrm{N}-4), 5-\mathrm{H}(\mathrm{N}-4), 8-\mathrm{H}$ (N-1); MS (EI) $m / z 279\left(\mathrm{M}^{+}\right) ;$HPLC (Waters 991, eluent: n-hexane-ethanol-propan-2-ol, 800:150:50; analysis time: 50 min, detection: 234 nm) t_{R} (major) $38.08, t_{\mathrm{R}}$ (minor) 34.23 min$]$. Ratio of integration major: minor $80: 20$.

Quinoxalin-2 $(1 H)$-one oximes 12 and 13. General procedure

A 1,2-diaminobenzene derivative 1a or $\mathbf{1 b}(5 \mathrm{mmol})$ was dissolved or suspended in $96 \% \mathrm{EtOH}(4 \mathrm{ml})$ at room temperature, $(Z)-2-[(E)$-hydroxyimino]acetohydroximoyl chloride $11(0.67 \mathrm{~g}$, $5.5 \mathrm{mmol})$ was added, and then a solution of $\mathrm{NaHCO}_{3}(0.46 \mathrm{~g}$, $5.5 \mathrm{mmol})$ in water (16 ml) was added dropwise. After storage at room temperature for 1 day the precipitate was filtered off, and washed with water.

5,7-Dichloroquinoxalin-2(1H)-one oxime 12a and 6,8-dichloroquinoxalin-2($\mathbf{1 H}$)-one oxime 13a. $(0.97 \mathrm{~g}, 84 \%)$ as yellow crystals (Found: C, 41.6; H, 2.0; N, 18.3. Calc. for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 41.8 ; \mathrm{H}, 2.2 ; \mathrm{N}, 18.3 \%$); the two isomers were separated by flash-vacuum chromatography twice on silica gel; eluents were $\mathrm{CHCl}_{3}-\mathrm{MeOH} 95: 5$ and $\mathrm{Et}_{2} \mathrm{O}$, respectively.

5,7-Dichloroquinoxalin-2(1H)-one oxime 12a. Yellow crystals, $\mathrm{mp} 213-215^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.15\left(\mathrm{~d}, 1 \mathrm{H}, J_{6,8} 2.0,6-\mathrm{H}\right), 7.22$ (d, 1H, 8-H), $7.94(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 10.51$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 10.83 (s, $1 \mathrm{H}, \mathrm{OH}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 113.1$ (ddd, $J_{\mathrm{C} 8,8 \mathrm{H}} 170.0, J_{\mathrm{C8}, 6 \mathrm{H}} 6.0$, $\left.J_{\mathrm{C} 8, \mathrm{NH}} 3, \mathrm{C}-8\right), 121.0\left(\mathrm{dd}, J_{\mathrm{C} 6,6 \mathrm{H}} 173.7, J_{\mathrm{C} 6,8 \mathrm{H}} 6.0, \mathrm{C}-6\right.$), 128.4 (m, $\left.J_{\mathrm{CAa}, 3 \mathrm{H}} 11, J_{\mathrm{C4a}, \mathrm{NH}}=J_{\mathrm{CAa}, 6 \mathrm{H}}=J_{\mathrm{C4a}, 8 \mathrm{H}}=5.5, \mathrm{C}-4 \mathrm{a}\right), 132.9\left(\mathrm{~d} J_{\mathrm{C} 5,6 \mathrm{H}}\right.$ $4.5, \mathrm{C}-5), 133.7\left(\mathrm{t}, J_{\mathrm{C} 7,6 \mathrm{H}}=J_{\mathrm{C} 7,8 \mathrm{H}}=5.0, \mathrm{C}-7\right), 135.9(\mathrm{~s}, \mathrm{C}-8 \mathrm{a})$, 141.6 (dd, $J_{\mathrm{C} 2,3 \mathrm{H}} 10.7, J_{\mathrm{C} 2, \mathrm{OH}} 7.0, \mathrm{C}-2$), 151.7 (dd, $J_{\mathrm{C} 3,3 \mathrm{H}} 190.2$, $J_{\mathrm{C} 3, \mathrm{NH}} 4.5, \mathrm{C}-3$); MS (EI) $m / z 229\left(\mathrm{M}^{+}\right)$.

6,8-Dichloroquinoxalin-2(1H)-one oxime 13a. Yellow crystals, $\mathrm{mp} 190^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.49\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,7} 2.0,5-\mathrm{H}\right)$, $7.64(\mathrm{~d}, 1 \mathrm{H}, 7-\mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 8.13$ (br s, $1 \mathrm{H}, \mathrm{NH}), 11.28$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 118.0\left(\mathrm{dd}, J_{\mathrm{C} 8, \mathrm{NH}} 5.4, J_{\mathrm{C} 8,7 \mathrm{H}} 4.5, \mathrm{C}-8\right)$, 125.1 (dd, $\left.J_{\mathrm{C} 6,7 \mathrm{H}} 4.7, J_{\mathrm{C} 6,5 \mathrm{H}} 3.8, \mathrm{C}-6\right), 126.9$ (dd, $J_{\mathrm{C} 5,5 \mathrm{H}} 168.7$, $\left.J_{\mathrm{C5}, 7 \mathrm{H}} 5.4, \mathrm{C}-5\right), 128.3\left(\mathrm{t}, J_{\mathrm{CBa}, 7 \mathrm{H}}=J_{\mathrm{C8a}, 5 \mathrm{H}}=6.5, \mathrm{C}-8 \mathrm{a}\right), 128.7(\mathrm{dd}$, $J_{\mathrm{C} 7,7 \mathrm{H}} 172.9, J_{\mathrm{C} 7,5 \mathrm{H}} 5.4, \mathrm{C}-7$), 134.5 (ddd, $J_{\mathrm{C4a}, 3 \mathrm{H}} 14.6, J_{\mathrm{C} 4 \mathrm{a}, \mathrm{NH}} 6.7$, $\left.J_{\mathrm{Caa}, 5 \mathrm{H}} 2.7, \mathrm{C}-4 \mathrm{a}\right), 141.3$ (dd, $J_{\mathrm{C} 2,3 \mathrm{H}} 11.7, J_{\mathrm{C} 2, \mathrm{OH}} 6.7, \mathrm{C}-2$), 152.6 (dd, $J_{\mathrm{C} 3,3 \mathrm{H}} 190.8, J_{\mathrm{C} 3, \mathrm{NH}} 5.2, \mathrm{C}-3$); MS (EI) $m / z 229\left(\mathrm{M}^{+}\right)$.

6-Chloro-7-(trifluoromethyl)quinoxalin-2(1H)-one oxime 13b and 7-chloro-6-(trifluoromethyl)quinoxalin-2(1H)-one oxime 12b. ($1.03 \mathrm{~g}, 78 \%$) as orange crystals, $\mathrm{mp} 197^{\circ} \mathrm{C}$ (decomp.); they were purified by flash-vacuum chromatography on silica gel, eluent was diethyl ether, to give yellow crystals (Found: C, 41.2; $\mathrm{H}, 2.15 ; \mathrm{N}, 16.2$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 41.0 ; \mathrm{H}, 1.9 ; \mathrm{N}$, $15.9 \%) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) \mathbf{1 3 b}: 7.54$ and 7.64 (each s, each 0.77 H , $5-, 8-\mathrm{H}), 7.95\left(\mathrm{~d}, 0.77 \mathrm{H}, J_{3, \mathrm{NH}} 1.9,3-\mathrm{H}\right), 10.51(\mathrm{~d}, 0.77 \mathrm{H}, \mathrm{NH})$,
$10.86(\mathrm{~s}, 0.77 \mathrm{H}, \mathrm{OH}) ; \mathbf{1 2 b}: 7.38$ and 7.61 (each s, each 0.23 H , $5-, 8-\mathrm{H}), 7.90\left(\mathrm{~d}, 0.23 \mathrm{H}, J_{3, \mathrm{NH}} 1.4,3-\mathrm{H}\right), 10.68(\mathrm{~d}, 0.23 \mathrm{H}, \mathrm{NH})$, $10.93(\mathrm{~s}, 0.23 \mathrm{H}, \mathrm{OH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ 13b: $113.4\left(\mathrm{q}, J_{\mathrm{C} 8, \mathrm{~F}} 5.7\right.$, $\mathrm{C}-8), 121.0(\mathrm{~s}, \mathrm{C}-6), 122.4\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}} 273.0, \mathrm{CF}_{3}\right), 126.3\left(\mathrm{q}, J_{\mathrm{C} 7, \mathrm{~F}}\right.$ 30.8, C-7), 129.9 (s, C-5), 132.4 (s, C-8a), 135.5 (s, C-4a), 141.6 (s, C-2), 154.4 (s, C-3); 12b: 116.3 (s, C-8), 118.3 (q, $J_{\mathrm{C} 6, \mathrm{~F}} 31.8$, $\mathrm{C}-6), 122.8$ (q, $J_{\mathrm{C}, \mathrm{F}} 271.8, \mathrm{CF}_{3}$), 126.8 (q, $J_{\mathrm{C} 5, \mathrm{~F}} 5.1, \mathrm{C}-5$), 130.8 (s, C-8a), 137.1 (s, C-4a), 141.1 (s, C-2), 152.2 (s, C-3); MS (EI) $m / z 263\left(\mathrm{M}^{+}\right)$.

Acknowledgements

This work was partly supported by the Hungarian Scientific Research Fund (T026264/OTKA). We are thankful for Mr Félix Hajdú for the HPLC results.

References

1 Cs. Gönczi, É. Csikós, E. Sándor, J. Bencze, V. Lakics, P. Molnár, A. Szappanos, B. Podányi, I. Hermecz, G. Héja, S. Báthori, I. Bata, A. Csutor, I. Szvoboda, Zs. Böcskei and I. Ritz, WO9719934, 1997 (Chem. Abstr., 1997, 127, 95295c).
2 A. Díaz, M. P. Matia, J. L. Garcia-Navío, J. J. Vaquero and J. Alvarez-Builla, J. Org. Chem., 1994, 59, 8294.
3 (a) See the Experimental section; (b) G. I. Braz, G. B. Myasinkova, A. Ya. Yakubovich and V. P. Bazov, Zh. Obshch. Khim., 1964, 34, 2980 (Chem. Abstr., 1965, 62, 562h).
4 (a) A. McKillop, A. Henderson and P. S. D. Ray, Tetrahedron Lett., 1982, 23, 3357; (b) A. McKillop, S. K. Chattopadhyay, A. Henderson and C. Avendano, Synthesis, 1997, 301.

5 In DMSO- d_{6} the tautomeric equilibrium is shifted strongly towards the form indicated in the scheme.
6 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093.
7 L. Muller, J. Am. Chem. Soc., 1979, 101, 4481.
8 E. Pretsch, J. Seibl, W. Simon and T. Clerc, Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden, Springer, Berlin, Heidelberg, New York, 1981.
9 D. M. Doddrell, D. T. Pegg and M. R. Bendall, J. Magn. Reson., 1982, 48, 323.
10 M. O. Lozinszkij, A. A. Dmitruha and A. G. Bratoljubova, Zs. Organicseszkoj Khim., 1974, 10, 71 (Chem. Abstr., 1974, 80, 108139t).
11 D. Batholomew and I. T. Kay, Tetrahedron Lett., 1979, 2827
12 L. W. Kissinger and H. E. Ungade, J. Org. Chem., 1958, 23, 1517.
13 A. Koçak, Ö. Bekâroglu, Helv. Chim. Acta, 1984, 67, 1503.
14 X. Gaudiano and X. Ricca, Gazz. Chim. Ital., 1959, 89, 587.
15 Full assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the two pure compounds was gained from 2D HMBC spectra, and the carbonproton coupling constants were determined from proton-coupled ${ }^{13}$ C NMR spectra and from 2D spectra using a modified HSQC pulse sequence.
16 K. E. Kövér, O. Prakash and V. Hruby, Magn. Reson. Chem., 1993, 31, 231.
17 W. Wieker, D. Leibfritz, R. Kerssebaum and W. Bermel, Magn. Reson. Chem., 1993, 31, 287.

